



### Introduction

- High-grading is a timber harvesting method wherein the largest and most valuable trees are removed.
- High-grading is a commonly used method to harvest timber on private lands in the Northeast.
- Previously high-graded forests are expected to require targeted rehabilitation practices.
- Forest managers need objective methods to incorporate an understanding of high-grading history into informing future management practices.



Figure 1. Left: Map displaying stand locations for high-grades (blue triangles) and shelterwoods (green circles). Right: Collection of seedling regeneration data.

## Methods

- We selected 9 mixed oak stands that were high-graded 8-15 years ago, and, for comparison, we selected 9 stands that received the seed/establishment cut of a shelterwood sequence (Fig. 1).
- We systematically sampled the regeneration and overstory layers using nested fixed-area plots.
- <u>Regen Plots</u>: We tallied all tree seedlings < 2.5 cm DBH and  $\geq$  5.1 cm tall by species and height class.
- Overstory Plots: We collected diameter at breast height (DBH), tree quality, tree height, and uncompacted and compacted live crown depths for all trees  $\geq 12.7$  cm.
- We used a mixture of linear and non-parametric models to evaluate the effect of harvest type on standlevel variability, tree form/health, distribution of diameters, and tree crown dimensions.

# Seeing Past the Green: Quantifying the Characteristics of High-graded Forests

<sup>1</sup>Department of Ecosystem Science and Management, The Pennsylvania State University <sup>2</sup>Department of Biology, Indiana University of Pennsylvania © Curtze & Leites 2020

# Objective

To quantify unique structural and compositional attributes of high-graded forests in order to learn about stand history and inform future management activities.



Figure 2. a) Quadratic mean diameter (QMD) by harvest type. b) Proportion of total basal area (BA) that is acceptable growing stock (AGS) by harvest type. c) Fitted Weibull probability density function of tree diameters for high-grades (solid blue line), unimodal shelterwoods (solid green line), and bimodal shelterwoods (dashed green line). Dashed vertical black line represents the minimum inventory diameter of 12.7 cm. d) Ratio of the compacted to uncompacted live crown depths by harvest type. e) Ratio of the median to mean tree diameter by harvest type. f) Coefficient of variation (CV) of plot-level sawtimber BA estimates (all trees  $\geq$  29.2 cm DBH) and of plot-level desirable seedling regeneration density estimates. All overstory data in graphs except for d use all trees  $\geq 12.7$  cm. Error bars in graphs b, d, and f represent 95% confidence intervals.



# Curtze, AC.<sup>1</sup>; Muth, AB.<sup>1</sup>; Larkin, JL.<sup>2</sup>; Leites, LP.<sup>1\*</sup>

### Results

### Discussion

- High-grades have lower BA in AGS, which results in lower economic value and stand health (Fig. 2b).
- The larger difference between compacted and uncompacted live crowns (Fig. 2d) in high-grades

shelterwoods and high-grades by species group. (ACRU = Acer rubrum, BETUL = *Betula spp.*, QUERC = *Quercus* spp., and Other = All other species).

#### Acknowledgements

Funding provided by the USDA-NRCS in association with the Working Lands for Wildlife Partnership & by USDA National Institute of Food and Agriculture and Hatch Appropriations under Project #PEN04700 and Accession #1019151

\* Corresponding author: Laura Leites, lpl3@psu.edu